Metadata Search Funding Data Link References Status API Help
Facet browsing currently unavailable
Page 1 of 15 results
Sort by: relevance publication year

Some new inequalities for convex functions with applications in normed spaces

JOURNAL ARTICLE published 2008 in Mathematical Inequalities & Applications

Authors: Neil S. Barnett | Sever Silvestru Dragomir

A new (probabilistic) proof of the Diaz–Metcalf and Pólya–Szego inequalities and some applications

JOURNAL ARTICLE published 12 August 2005 in Theory of Probability and Mathematical Statistics

Authors: Tibor K. Pogány

Stochastic ordering of spacings from dependent random variables

BOOK CHAPTER published 1984 in Institute of Mathematical Statistics Lecture Notes - Monograph Series

Authors: Moshe Shaked | Y. L. Tong

Modern Probability Theory and its Applications, by E. Parzen. John Wiley and Sons, Inc., New York and London. 464 pages. $10. 75.

JOURNAL ARTICLE published May 1962 in Canadian Mathematical Bulletin

Authors: W.A. O'N. Waugh

Probability Theory and Mathematical Statistics. By Marek Fisz. Pp. xvi, 677. 115s. 1963. (John Wiley and Sons: New York, London)

JOURNAL ARTICLE published February 1965 in The Mathematical Gazette

Authors: A. M. Walker

An adaptive moment estimator of a parameter of a distribution constructed from observations with admixture

JOURNAL ARTICLE published 24 January 2008 in Theory of Probability and Mathematical Statistics

Authors: N. Lodatko | R. Maĭboroda

Progress in Mathematics volume 3: Probability Theory, Mathematical Statistics, and Theoretical Cybernetics. Ed. R. V. Gamkrelidze; transi, anon. Pp.112. $15.00. 1969. (Plenum Press, New York.)

JOURNAL ARTICLE published October 1970 in The Mathematical Gazette

Authors: David Kendall

Mathematical theory of probability and statistics, by Richard von Mises, edited and complemented by H. Geiringer. Academic Press, New York, 1964. vii + 694 pages. $22.00.

JOURNAL ARTICLE published June 1968 in Canadian Mathematical Bulletin

Authors: D. A. Dawson

Introduction to the Theory of Probability and Statistics. By N. Arley and K. R. Buch. Pp. xi, 236. 32s. 1950. (John Wiley, New York ; Chapman and Hall)

JOURNAL ARTICLE published December 1951 in The Mathematical Gazette

Authors: F. Sandon

The Method of Trigonometrical sums in the Theory of Numbers. By I.M. Vinogradov Translated from the Russian, revised and annotated by K.F. Roth and Anne Davenport Pp.x, 180. 33s. 1954. (Interscience Publishers, London and New York) - Elements of Number Theory. By I.M. Vinogradov Translated from the fifth revised edition by Saul Kravetz. Pp.viii, 227. $1.75 (paper), $ 3.00 (cloth). 1954. (Dover Publications Inc.)

JOURNAL ARTICLE published December 1955 in The Mathematical Gazette

Authors: G.L. Watson

The Mathematical Theory of Optimal Processes, by L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko. Authorized Translation from the Russian. Translator: K. N. Trirogoff, Editor: L.. W. Neustadt. Interscience Publishers (division of John Wiley and Sons, Inc. , New York) 1962. viii + 360 pages.

JOURNAL ARTICLE published September 1964 in Canadian Mathematical Bulletin

Authors: H. Kaufman

Lectures on the Calculus of Variations, by O. Bolza. 2nd edition. Dover Publications Inc., New York, 1961. ix + 271 pages. $1.65. - Lectures on the Calculus of Variations, by O. Bolza. 2nd edition. Chelsea Publishing Company, New York, 1961 (1904). ix + 271 pages. $1. 19. - The Calculus of Finite Differences, by G. Boole. Edited by J. F. Moulton. Fourth edition. Reprint 1960 from 1872 edition. Chelsea Publishing Company, New York, 1960. $1. 39. Cloth $3.95. - The Mathematical Theory of Non-uniform Gases, by Chapman, Sand, T. G. Cowling. Cambridge 1960. MacMillan Company of Canada, xxiii + 431 pages. $2.95. - Exploitation derelevés expérimentaux, by Genevieve Coulmy. Manuels de calculs techniques, Vol. IV. Gauthier Villars et Cie, Paris, 1962 (2 May), xiii + 186 pages. 20NF. - Tables of the Mathematical Functions, Vol, III, by H. T. Davis and Vera J. Fisher. Arithmetical Tables. The Principia Press of Trinity University, San Antonio, Texas, 1962. ix + 554 pages. $8.75. - Tables of Integrals and Other Mathematical Data, by H. B. Dwight. Third edition. Brett Macmillan Ltd., Gait, Ontario, 1957. x + 288 pages. $3.00. - The Mathematical Theory of Relativity, by A. S. Eddington. Cambridge University Press, 1960. Macmillan Company of Canada, ix + 270 pages. $2. 95. - An Index of Mathematical Tables, by A. Fletcher, J. C. P. Miller, L. Rosenhead, L.J. Comrie. Vol. I, Index According to Functions, xi + 608 pages. Vol. II, Bibliography, Lists of Errors in Published Tables, References, iv + 386 pages. Addison Wesley Publishing Company Inc., Reading, Mass., 1962. $42.00 - Calculus of Extension, by H. G. Forder. Chelsea Publishing Company, 50 E. Fordham Road, New York 68, N. Y., U.S.A. $4.95. - Topology of Three Manifolds and Related Topics, M. K. Fort (Ed. ). Proceedings of the 1961 Topology Institute at the University of Georgia. Prentice Hall Inc. Publications, Englewood Cliffs, New Jersey, 1962. ix + 256 pages. $10. 00. - Algebraical and Topological Foundations of Geometry, H. Freudenthal (Ed.). Proceedings of a Colloquium at Utrecht, August 1959. Symposium Publications Division, Pergamon Press, Oxford, vii + 208 pages. $10. 00. - Mathématiques Générales, Synthèse élémentaire, by Maurice Godefroy. Gauthier Villars and Cie., Paris, 1961. 187 pages. 16NF = $3. 50. - Intermediate Pure Mathematics, by H. A. Hayden, C. G. Paradine, and R. N. Giles. Longmans Canada Limited, 137 Bond Street, Toronto, 1962. vii + 695 pages. $5.05. - College Plane Geometry, by E. M. Hemmerling. J. Wiley, New York, 1958. ix+ 310 pages. $4.95. - The Mathematical Theory of Electricity and Magnetism, by Sir James Jeans. Filth edition. Cambridge University Press, 1960. Macmillan Company of Canada. 652 pages. $3.95. - Summation of Series, by L. B. W. Jolley. Second revised edition. Dover Publications Inc., New York, 1961. xii + 251 pages. $2. 00. - Theory of Numbers, by G. B. Mathews. Chelsea Publishing Company, New York, 1961. xii + 323 pages. - Geometry for Advanced Pupils, E. A. Maxwell. Oxford University Press, Toronto. 176 pages. $3.75. - Russian Reader in Pure and Applied Mathematics, by P. H. Nidditch. University Mathematical Texts. Oliver and Boyd Ltd. and J. Wiley and Sons Inc. , New York 16, N. Y., 1962. x + 166 pages. $2.25.

JOURNAL ARTICLE published January 1963 in Canadian Mathematical Bulletin

The Impacts of Urban Functional Division on Economic Growth from the Perspective of the Spatial Agglomeration Theory—The Empirical Analysis Based on Panel Data Model

BOOK CHAPTER published 2023 in Proceedings of the 2022 International Conference on Mathematical Statistics and Economic Analysis (MSEA 2022)

Authors: Sizhi Liang | Meiqing Zhang

Special Issue No. – 10, June, 2020 Journal > Special Issue > Special Issue No. – 10, June, 2020 > Page 5 “Quantative Methods in Modern Science” organized by Academic Paper Ltd, Russia MORPHOLOGICAL AND ANATOMICAL FEATURES OF THE GENUS GAGEA SALISB., GROWING IN THE EAST KAZAKHSTAN REGION Authors: Zhamal T. Igissinova,Almash A. Kitapbayeva,Anargul S. Sharipkhanova,Alexander L. Vorobyev,Svetlana F. Kolosova,Zhanat K. Idrisheva, DOI: https://doi.org/10.26782/jmcms.spl.10/2020.06.00041 Abstract: Due to ecological preferences among species of the genus GageaSalisb, many plants are qualified as rare and/or endangered. Therefore, the problem of rational use of natural resources, in particular protection of early spring plant species is very important. However, literary sources analysis only reveals data on the biology of species of this genus. The present research,conducted in the spring of 2017-2019, focuses on anatomical and morphological features of two Altai species: Gagealutea and Gagea minima; these features were studied, clarified and confirmed by drawings and photographs. The anatomical structure of the stem and leaf blade was studied in detail. The obtained research results will prove useful for studies of medicinal raw materials and honey plants. The aforementioned species are similar in morphological features, yet G. minima issmaller in size, and its shoots appear earlier than those of other species Keywords: Flora,gageas,Altai species,vegetative organs., Refference: I. Atlas of areas and resources of medicinal plants of Kazakhstan.Almaty, 2008. II. Baitenov M.S. Flora of Kazakhstan.Almaty: Ġylym, 2001. III. DanilevichV. G. ThegenusGageaSalisb. of WesternTienShan. PhD Thesis, St. Petersburg,1996. IV. EgeubaevaR.A., GemedzhievaN.G. The current state of stocks of medicinal plants in some mountain ecosystems of Kazakhstan.Proceedings of the international scientific conference ‘”Results and prospects for the development of botanical science in Kazakhstan’, 2002. V. Kotukhov Yu.A. New species of the genus Gagea (Liliaceae) from Southern Altai. Bot. Journal.1989;74(11). VI. KotukhovYu.A. ListofvascularplantsofKazakhstanAltai. Botan. Researches ofSiberiaandKazakhstan.2005;11. VII. KotukhovYu. The current state of populations of rare and endangered plants in Eastern Kazakhstan. Almaty: AST, 2009. VIII. Kotukhov Yu.A., DanilovaA.N., AnufrievaO.A. Synopsisoftheonions (AlliumL.) oftheKazakhstanAltai, Sauro-ManrakandtheZaisandepression. BotanicalstudiesofSiberiaandKazakhstan. 2011;17: 3-33. IX. Kotukhov, Yu.A., Baytulin, I.O. Rareandendangered, endemicandrelictelementsofthefloraofKazakhstanAltai. MaterialsoftheIntern. scientific-practical. conf. ‘Sustainablemanagementofprotectedareas’.Almaty: Ridder, 2010. X. Krasnoborov I.M. et al. The determinant of plants of the Republic of Altai. Novosibirsk: SB RAS, 2012. XI. Levichev I.G. On the species status of Gagea Rubicunda. Botanical Journal.1997;6:71-76. XII. Levichev I.G. A new species of the genus Gagea (Liliaceae). Botanical Journal. 2000;7: 186-189. XIII. Levichev I.G., Jangb Chang-gee, Seung Hwan Ohc, Lazkovd G.A.A new species of genus GageaSalisb.(Liliaceae) from Kyrgyz Republic (Western Tian Shan, Chatkal Range, Sary-Chelek Nature Reserve). Journal of Asia-Pacific Biodiversity.2019; 12: 341-343. XIV. Peterson A., Levichev I.G., Peterson J. Systematics of Gagea and Lloydia (Liliaceae) and infrageneric classification of Gagea based on molecular and morphological data. Molecular Phylogenetics and Evolution.2008; 46. XV. Peruzzi L., Peterson A., Tison J.-M., Peterson J. Phylogenetic relationships of GageaSalisb.(Liliaceae) in Italy, inferred from molecular and morphological data matrices. Plant Systematics and Evolution; 2008: 276. XVI. Rib R.D. Honey plants of Kazakhstan. Advertising Digest, 2013. XVII. Scherbakova L.I., Shirshikova N.A. Flora of medicinal plants in the vicinity of Ust-Kamenogorsk. Collection of materials of the scientific-practical conference ‘Unity of Education, Science and Innovation’. Ust-Kamenogorsk: EKSU, 2011. XVIII. syganovA.P. PrimrosesofEastKazakhstan. Ust-Kamenogorsk: EKSU, 2001. XIX. Tsyganov A.P. Flora and vegetation of the South Altai Tarbagatay. Berlin: LAP LAMBERT,2014. XX. Utyasheva, T.R., Berezovikov, N.N., Zinchenko, Yu.K. ProceedingsoftheMarkakolskStateNatureReserve. Ust-Kamenogorsk, 2009. XXI. Xinqi C, Turland NJ. Gagea. Flora of China.2000;24: 117-121. XXII. Zarrei M., Zarre S., Wilkin P., Rix E.M. Systematic revision of the genus GageaSalisb. (Liliaceae) in Iran.BotJourn Linn Soc.2007;154. XXIII. Zarrei M., Wilkin P., Ingroille M.J., Chase M.W. A revised infrageneric classification for GageaSalisb. (Tulipeae; Liliaceae): insights from DNA sequence and morphological data.Phytotaxa.2011:5. View | Download INFLUENCE OF SUCCESSION CROPPING ON ECONOMIC EFFICIENCY OF NO-TILL CROP ROTATIONS Authors: Victor K. Dridiger,Roman S. Stukalov,Rasul G. Gadzhiumarov,Anastasiya A. Voropaeva,Viktoriay A. Kolomytseva, DOI: https://doi.org/10.26782/jmcms.spl.10/2020.06.00042 Abstract: This study was aimed at examining the influence of succession cropping on the economic efficiency of no-till field crop rotations on the black earth in the zone of unstable moistening of the Stavropol krai. A long-term stationary experiment was conducted to examine for the purpose nine field crop rotation patterns different in the number of fields (four to six), set of crops, and their succession in crop rotation. The respective shares of legumes, oilseeds, and cereals in the cropping pattern were 17 to 33, 17 to 40, and 50 to 67 %. It has been established that in case of no-till field crop cultivation the economic efficiency of plant production depends on the set of crops and their succession in rotation. The most economically efficient type of crop rotation is the soya-winter wheat-peas-winter wheat-sunflower-corn six-field rotation with two fields of legumes: in this rotation 1 ha of crop rotation area yields 3 850 grain units per ha at a grain unit prime cost of 5.46 roubles; the plant production output return and profitability were 20,888 roubles per ha and 113 %, respectively. The high production profitabilities provided by the soya-winter wheat-sunflower four-field and the soya-winter-wheat-sunflower-corn-winter wheat five-field crop rotation are 108.7 and 106.2 %, respectively. The inclusion of winter wheat in crop rotation for two years in a row reduces the second winter wheat crop yield by 80 to 100 %, which means a certain reduction in the grain unit harvesting rate to 3.48-3.57 thousands per ha of rotation area and cuts the production profitability down to 84.4-92.3 %. This is why, no-till cropping should not include winter wheat for a second time Keywords: No-till technology,crop rotation,predecessor,yield,return,profitability, Refference: I Badakhova G. Kh. and Knutas A. V., Stavropol Krai: Modern Climate Conditions [Stavropol’skiykray: sovremennyyeklimaticheskiyeusloviya]. Stavropol: SUE Krai Communication Networks, 2007. II Cherkasov G. N. and Akimenko A. S. Scientific Basis of Modernization of Crop Rotations and Formation of Their Systems according to the Specializations of Farms in the Central Chernozem Region [Osnovy moderniz atsiisevooborotoviformirovaniyaikh sistem v sootvetstvii so spetsi-alizatsiyeykhozyaystvTsentral’nogoChernozem’ya]. Zemledelie. 2017; 4: 3-5. III Decree 330 of July 6, 2017 the Ministry of Agriculture of Russia “On Approving Coefficients of Converting to Agricultural Crops to Grain Units [Ob utverzhdeniikoeffitsiyentovperevoda v zernovyyee dinitsysel’s kokhozyaystvennykhkul’tur]. IV Dridiger V. K., About Methods of Research of No-Till Technology [O metodikeissledovaniytekhnologii No-till]//Achievements of Science and Technology of AIC (Dostizheniyanaukiitekhniki APK). 2016; 30 (4): 30-32. V Dridiger V. K. and Gadzhiumarov R. G. Growth, Development, and Productivity of Soya Beans Cultivated On No-Till Technology in the Zone of Unstable Moistening of Stavropol Region [Rost, razvitiyeiproduktivnost’ soiprivozdelyvaniipotekhnologii No-till v zone ne-ustoychivog ouvlazhneniyaStavropol’skogokraya]//Oil Crops RTBVNIIMK (Maslichnyyekul’turyNTBVNIIMK). 2018; 3 (175): 52–57. VI Dridiger V. K., Godunova E. I., Eroshenko F. V., Stukalov R. S., Gadzhiumarov, R. G., Effekt of No-till Technology on erosion resistance, the population of earthworms and humus content in soil (Vliyaniyetekhnologii No-till naprotivoerozionnuyuustoychivost’, populyatsiyudozhdevykhcherveyisoderzhaniyegumusa v pochve)//Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2018; 9 (2): 766-770. VII Karabutov A. P., Solovichenko V. D., Nikitin V. V. et al., Reproduction of Soil Fertility, Productivity and Energy Efficiency of Crop Rotations [Vosproizvodstvoplodorodiyapochv, produktivnost’ ienergeticheskayaeffektivnost’ sevooborotov]. Zemledelie. 2019; 2: 3-7. VIII Kulintsev V. V., Dridiger V. K., Godunova E. I., Kovtun V. I., Zhukova M. P., Effekt of No-till Technology on The Available Moisture Content and Soil Density in The Crop Rotation [Vliyaniyetekhnologii No-till nasoderzhaniyedostupnoyvlagiiplotnost’ pochvy v sevoob-orote]// Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2017; 8 (6): 795-99. IX Kulintsev V. V., Godunova E. I., Zhelnakova L. I. et al., Next-Gen Agriculture System for Stavropol Krai: Monograph [SistemazemledeliyanovogopokoleniyaStavropol’skogokraya: Monogtafiya]. Stavropol: AGRUS Publishers, Stavropol State Agrarian University, 2013. X Lessiter Frank, 29 reasons why many growers are harvesting higher no-till yields in their fields than some university scientists find in research plots//No-till Farmer. 2015; 44 (2): 8. XI Rodionova O. A. Reproduction and Exchange-Distributive Relations in Farming Entities [Vosproizvodstvoiobmenno-raspredelitel’nyyeotnosheniya v sel’skokhozyaystvennykhorganizatsiyakh]//Economy, Labour, and Control in Agriculture (Ekonomika, trud, upravleniye v sel’skomkhozyaystve). 2010; 1 (2): 24-27. XII Sandu I. S., Svobodin V. A., Nechaev V. I., Kosolapova M. V., and Fedorenko V. F., Agricultural Production Efficiency: Recommended Practices [Effektivnost’ sel’skokhozyaystvennogoproizvodstva (metodicheskiyerekomendatsii)]. Moscow: Rosinforagrotech, 2013. XIII Sotchenko V. S. Modern Corn Cultivation Technologies [Sovremennayatekhnologiyavozdelyvaniya]. Moscow: Rosagrokhim, 2009. View | Download DEVELOPMENT AND TESTING OF AUTONOMOUS PORTABLE SEISMOMETER DESIGNED FOR USE AT ULTRALOW TEMPERATURES IN ARCTIC ENVIRONMENT Authors: Mikhail A. Abaturov,Yuriy V. Sirotinskiy, DOI: https://doi.org/10.26782/jmcms.spl.10/2020.06.00043 Abstract: This paper is concerned with solving one of the issues of the general problem of designing geophysical equipment for the natural climatic environment of the Arctic. The relevance of the topic has to do with an increased global interest in this region. The paper is aimed at considering the basic principles of developing and the procedure of testing seismic instruments for use at ultralow climatic temperatures. In this paper the indicated issue is considered through the example of a seismic module designed for petroleum and gas exploration by passive seismoacoustic methods. The seismic module is a direct-burial portable unit of around 5 kg in weight, designed to continuously measure and record microseismic triaxial orthogonal (ZNE) noise in a range from 0.1 to 45 Hz during several days in autonomous mode. The functional chart of designing the seismic module was considered, and concrete conclusions were made for choosing the necessary components to meet the ultralow-temperature operational requirements. The conclusions made served for developing appropriate seismic module. In this case, the components and tools used included a SAFT MP 176065 xc low-temperature lithium cell, industrial-spec electronic component parts, a Zhaofeng Geophysical ZF-4.5 Chinese primary electrodynamic seismic sensor, housing seal parts made of frost-resistant silicone materials, and finely dispersed silica gel used as water-retaining sorbent to avoid condensation in the housing. The paper also describes a procedure of low-temperature collation tests at the lab using a New Brunswick Scientific freezing plant. The test results proved the operability of the developed equipment at ultralow temperatures down to -55°C. In addition, tests were conducted at low microseismic noises in the actual Arctic environment. The possibility to detect signals in a range from 1 to 10 Hz at the level close to the NLNM limit (the Peterson model) has been confirmed, which allows monitoring and exploring petroleum and gas deposits by passive methods. As revealed by this study, the suggested approaches are efficient in developing high-precision mobile seismic instruments for use at ultralow climatic temperatures. The solution of the considered instrumentation and methodical issues is of great practical significance as a constituent of the generic problem of Arctic exploration. Keywords: Seismic instrumentation,microseismic monitoring,Peterson model,geological exploration,temperature ratings,cooling test, Refference: I. AD797: Ultralow Distortion, Ultralow Noise Op Amp, Analog Devices, Inc., Data Sheet (Rev. K). Analog Devices, Inc. URL: https://www.analog.com/media/en/technical-documentation/data-sheets/AD797.pdf(Date of access September 2, 2019). II. Agafonov, V. M., Egorov, I. V., and Shabalina, A. S. Operating Principles and Technical Characteristics of a Small-Sized Molecular–Electronic Seismic Sensor with Negative Feedback [Printsipyraboty I tekhnicheskiyekharakteristikimalogabaritnogomolekulyarno-elektronnogoseysmodatchika s otritsatel’noyobratnoysvyaz’yu]. SeysmicheskiyePribory (Seismic Instruments). 2014; 50 (1): 1–8. DOI: 10.3103/S0747923914010022. III. Antonovskaya, G., Konechnaya, Ya.,Kremenetskaya, E., Asming, V., Kvaema, T., Schweitzer, J., Ringdal, F. Enhanced Earthquake Monitoring in the European Arctic. Polar Science. 2015; 1 (9): 158-167. IV. Anthony, R. E., Aster, R. C., Wiens, D., Nyblade, Andr., Anandakrishnan, Sr., Huerta, Audr., Winberry, J. P., Wilson, T., and Rowe, Ch. The Seismic Noise Environment of Antarctica. Seismological Research Letters. 2015; 86(1): 89-100. DOI: 10.1785/0220150005 V. Brincker, R., Lago, T. L., Andersen, P., and Ventura, C. Improving the Classical Geophone Sensor Element by Digital Correction. In Conference Proceedings: IMAC-XXIII: A Conference & Exposition on Structural Dynamics Society for Experimental Mechanics, 2005. URL: https://www.researchgate.net/publication/242452637_Improving_the_Classical_Geophone_Sensor_Element_by_Digital_Correction(Date of access September 2, 2019). VI. Bylaw 164 of the State Committee for Construction of the Russian Federation “On adopting amendments to SNiP 31-01-99 “Construction climatology”. URL: https://base.garant.ru/2322381/(Date of access September 2, 2019). VII. Chao Xu, Junbo Wang, Deyong Chen, Jian Chen, Bowen Liu, Wenjie Qi, XichenZheng, Hua Wei, Guoqing Zhang. The Electrochemical Seismometer Based on a Novel Designed.Sensing Electrode for Undersea Exploration. 20th International Conference on Solid-State Sensors, Actuators and Microsystems &Eurosensors XXXIII (TRANSDUCERS &EUROSENSORS XXXIII). IEEE, 2019. DOI: 10.1109/TRANSDUCERS.2019.8808450. VIII. Chebotareva, I. Ya. New algorithms of emission tomography for passive seismic monitoring of a producing hydrocarbon deposit: Part I. Algorithms of processing and numerical simulation [Novyye algoritmyemissionnoyto mografiidlyapassivnogoseysmicheskogomonitoringarazrabatyvayemykhmestorozhdeniyuglevodorodov. Chast’ I: Algoritmyobrabotki I chislennoyemodelirovaniye]. FizikaZemli. 2010; 46(3):187-98. DOI: 10.1134/S106935131003002X IX. Danilov, A. V. and Konechnaya, Ya. V. Analytical comparison of seismic instruments for stationary surveys in the Arctic [Sravnitel’nyyanalizseysmicheskoyapparaturydlyastatsionarnykhnablyudeniy v Arktike]. DSYS. URL: https://dsys.ru/upload/id254_docPDF_FranzJosefLand.pdf(Date of access September 2, 2019). X. Dew point temperature calculator. Maple Tech. International LLC. URL: https://www.calculator.net/dew-point-calculator.html?airtemperature=20&airtemperatureunit=celsius&humidity=0.34&dewpoint=&dewpointunit=celsius&x=51&y=14(Date of access September 2, 2019). XI. Frolov, A. S. Matching of wave fields recorded by different geophysical receivers [Soglasovaniyevolnovykhpoley, poluchennykh s primeneniyemrazlichnoyregistriruyushcheyapparatury]. Abstracts IX International scientific and technical conference competition of young specialists “Geophysics-2013”. Saint-Petersburg: Gubkin University, 2013. URL: https://www.gubkin.ru/faculty/geology_and_geophysics/chairs_and_departments/exploration_geophysics_and_computers_systems/files/2013_SPb_Frolov.pdf. (Date of access September 2, 2019). XII. Gibbons, S. J., Asming, V., Fedorov, A., Fyen, J., Kero, J., Kozlovskaya, E., Kværna, T., Liszka, L., Näsholm, S.P., Raita, T., Roth, M., Tiira, T., Vinogradov, Yu. The European Arctic: A laboratory for seismoacoustic studies. Seism. Res. Letters. 2015; 86 (3): 917–928. XIII. GOST 8.395-80. State system for ensuring the uniformity of measurements. Reference conditions of measurements while calibrating. General requirements [Gosudarstvennayasistemaobespecheniyaedinstvaizmereniy. Normal’nyyeusloviyaizmereniypripoverke. Obshchiyetrebovaniya]. Moscow: Standartinform, 2008. URL: http://gostrf.com/normadata/1/4294821/4294821960.pdf (Date of access September 2, 2019). XIV. Guralp 6TD. Operators’ Guide. Document Number: MAN-T60-0002, Issue J: April, 2017. Guralp Systems Limited. URL: https://www.guralp.com/documents/MAN-T60-0002.pdf (Date of access September 2, 2019). XV. Inshakova, A. S., Barykina, E. S., and Kozlov, V. V. Role of silica gel in adsorption air drying [Rol’ silikagelya v adsorbtsionnoyosushkevozdukha]. AlleyaNauki (Alley of Science). 2017; 15. URL: https://www.alley- science.ru/domains_data/files/November2017/ROL%20SILIKAGELYa%20V%20ADSORBCIONNOY%20OSUShKE%20VOZDUHA.pdf(Date of access September 2, 2019). XVI. Ioffe, D. and Pozdnyakov, P. Searching for Hidden Reserves of Modern Microchip Circuits. Part I [Poiskskrytykhrezervovsovremennykhmikroskhem. Chast’ I].Komponenty I tekhnologii (Components and Technologies). 2015; 4: 144-46. XVII. Jiang Xu, Xi Wang, Ningyi Yuan, Jianning Ding, Si Qin, Joselito M. Razal, Xuehang Wang, ShanhaiGe, Gogotsi, Yu. Extending the low temperature operational limit of Li-ion battery to −80 °C. Energy Storage Materials (IF0). Published 2019-04-27. DOI: 10.1016/j.ensm.2019.04.033. XVIII. Kouznetsov, O. L., Lyasch, Y. F., Chirkin, I. A., Rizanov, E. G., LeRoy, S. D., Koligaev, S. O. Long-term monitoring of microseismic emissions: Earth tides, fracture distribution, and fluid content. SEG, APPG Interpretation. 2016: 4 (2): T191–T204. XIX. Laverov, N. P., Bogoyavlenskiy, V. I., Bogoyavlenskiy, I. V. Fundamental Aspects of Rational Management of the Petroleum and Gas Resources of the Arctic and the Russian Continental Shelf: Strategy, Prospects, and Problems [Fundamental’nyyeaspektyratsional’nogoosvoyeniyaresursovneftiigazaArktiki I shel’faRossii: strategiya, perspektivyi problem].Arktika: ekologiya I ekonomika [Arctic: Ecology and Economy]. 2016; 2 (22): 4-13. XX. Lee, P. Low Noise Amplifier Selection Guide for Optimal Noise Performance, Analog Devices, Inc., AN-940 Application Note. Analog Devices, Inc. URL: https://www.analog.com/media/en/technical-documentation/application-notes/AN-940.pdf(Date of access September 2, 2019). XXI. Markatis, N., Polychronopoulou, K., Tselentis, Ak. Passive seismic tomography: A passive concept actively evolving. First Break. 2012; 30 (7): 83-90. XXII. Matveev, I. V. and Matveeva, N. V. Portable seismic recorder “SEISAR-5” with very low energy consumption for autonomous work in harsh climatic conditions [Portativnyyseysmicheskiyregistrator «Seysar-5» s ochen’ nizkimenergopotrebleniyemdlyaavtonomnoyraboty v slozhnykhklimatic heskikhusloviyakh]. Nauka I tekhnologicheskierazrabotki (Science and Technological Developments). 2017; 96 (3): 33-40. [Special Issue “Applied Geophysics: New Developments and Results. Part 1. Seismology and Seismic Exploration]. DOI: 10.21455/std2017.3-3. XXIII. Mishra, R. The Temperature Ratings of Electronic Parts.Electronics Cooling magazine. URL: http://www.electronics-cooling.com/2004/02/the-temperature-ratings-of-electronic-parts(Date of access September 2, 2019). XXIV. Moore, Sue E.; Stabeno, Phyllis J.; Van Pelt, Thomas I. The Synthesis of Arctic Research (SOAR) project. Deep-Sea Research Part II. 152: 1-7. DOI: 10.1016/j.dsr2.2018.05.013. XXV. MS-SPORT Viscous Silicone Lubricant with Fluoroplastic. ToR2257-010-45540231-2003. OOO VMPAUTO, URL: https://smazka.ru/attachments/get/469/ms-sport-tds.pdf(Date of access September 2, 2019). XXVI. New Brunswick™ Premium -86 °C Freezers. Operating manual. URL: https://www.eppendorf.com/product-media/doc/en/142770_Operating-Manual/New-Brunswick_Freezers_Operating-manual-86-C-Premium-Freezers.pdf(Date of access September 2, 2019). XXVII. New seismic digitizer/recorder for passive seismic monitoring applications. LandTech Enterprises. URL: http://www.landtechsa.com/Images/Instrument/SRi32L/SRi32L.pdf(Date of access September 2, 2019). XXVIII. Parker, T., Winberry, P., Huerta, A., Bainbridge, G., Devanney, P. Direct Burial Broadband Seismic Instrumentation for Polar Environments. Nanometrics Inc. URL: https://www.nanometrics.ca/sites/default/files/2017-11/direct_burial_bb_seismic_instrumentation_for_polar_environments.pdf. (Date of access September 2, 2019). XXIX. Peterson, J. Observation and Modeling of Seismic Background Noise. Albuquerque, New Mexico: US Department of Interior Geological Survey, 1993. XXX. Razinkov, O.G., Sidorov-Biryukov, D. D., Townsend, B., Parker, T., Bainbridge, G., Greiss, R. Strengths and Applications of Direct Burial Seismic Instruments [Preimushchestva I oblastiprimeneniyaseysmicheskikhpriborovdlyapryamoyustanovki v grunt] in Proc. VI Sci. Tech. Conf. “Problems of Complex Geophysical Monitoring of the Russian Far East”, Petropavlovsk-Kamchatskiy: Geophysical Survey, Russian Academy of Sciences, 2017. URL: http://www.emsd.ru/conf2017lib/pdf/techn/razinkov.pdf (Date of access September 2, 2019). XXXI. Roux, Ph., Wathelet, M., Roueff, Ant. The San Andreas Fault revisited through seismic-noise and surface-wave tomography. Geophysical Research Letters. 2011; 38 (13). DOI: 10.1029/2011GL047811. XXXII. Rubber O-ring seals for hydraulic and pneumatic equipment. Specifications [Kol’tsarezinovyyeuplotnitel’nyyekruglogosecheniyadlyagidravlicheskikh I pnevmaticheskikhustroystv. Tekhnicheskiyeusloviya]. GOST 18829-2017 Interstate standard. Moscow: Standartinform, 2017. URL: https://files.stroyinf.ru/Data/645/64562.pdf (Date of access September 2, 2019). XXXIII. Sanina, I., Gabsatarova, I., Chernykh, О.,Riznichenko, О., Volosov, S., Nesterkina, M., Konstantinovskaya, N. The Mikhnevo small aperture array enhances the resolution property of seismological observations on the East European Platform. Journal of Seismology (JOSE). 2011; 15 (3): 545-56. (DOI: 10.1007/sl0950-010-9211-х). XXXIV. SM-3VK Magnetoelectric Seismic Pickup. Specifications. ToR-4314-001-02698826-01. N. Laverov Federal Centre for Integrated Arctic Research, Russian Academy of Sciences. URL: http://fciarctic.ru/index.php?page=ckpg (Date of access September 2, 2019). XXXV. Sobisevich, A. L.,Presnov, D. A.,Agafonov, V. M.,Sobisevich, L. E. Autonomous geohydroacoustic ice buoy of new generation [Vmorazhivayemyyavtonomnyygeogidroakusticheskiy buy novogopokoleniya]. Nauka I tekhnologicheskierazrabotki (Science and Technological Developments). 2018; 97 (1): 25–34. [Special issue “Precise Geophysical Monitoring of Natural Hazards. Part 1. Instruments andTechnologies”]. DOI: 10.21455/ std2018.1-3. XXXVI. Zhukov, Y. V. Issues of resistance and reliability of electronic equipment products to the exposure factors [Voprosystoykosti i nadezhnostiizdeliyradioelektronnoytekhniki k vneshnimvozdeystvuyushchimfaktoram]. Provintsial’nyyenauchnyyezapiski (The journal Provincial scientific proceedings). 2019; 1 (9): 118-124. View | Download COMPARATIVE ANALYSIS OF RESULTS OF TREATMENT OF PATIENTS WITH FOOT PATHOLOGY WHO UNDERWENT WEIL OPEN OSTEOTOMY BY CLASSICAL METHOD AND WITHOUT STEOSYNTHESIS Authors: Yuriy V. Lartsev,Dmitrii A. Rasputin,Sergey D. Zuev-Ratnikov,Pavel V.Ryzhov,Dmitry S. Kudashev,Anton A. Bogdanov, DOI: https://doi.org/10.26782/jmcms.spl.10/2020.06.00044 Abstract: The article considers the problem of surgical correction of the second metatarsal bone length. The article analyzes the results of treatment of patients with excess length of the second metatarsal bones that underwent osteotomy with and without osteosynthesis. The results of treatment of patients who underwent metatarsal shortening due to classical Weil-osteotomy with and without osteosynthesis were analyzed. The first group consisted of 34 patients. They underwent classical Weil osteotomy. The second group included 44 patients in whomosteotomy of the second metatarsal bone were not by the screw. When studying the results of the treatment in the immediate postoperative period, weeks 6, 12, slightly better results were observed in patients of the first group, while one year after surgical treatment the results in both groups were comparable. One year after surgical treatment, there were 2.9% (1 patient) of unsatisfactory results in the first group and 4.5% (2 patients) in the second group. Considering the comparability of the results of treatment in remote postoperative period, the choice of concrete method remains with the operating surgeon. Keywords: Flat feet,hallux valgus,corrective osteotomy,metatarsal bones, Refference: I. A novel modification of the Stainsby procedure: surgical technique and clinical outcome [Text] / E. Concannon, R. MacNiocaill, R. Flavin [et al.] // Foot Ankle Surg. – 2014. – Dec., Vol. 20(4). – P. 262–267. II. Accurate determination of relative metatarsal protrusion with a small intermetatarsal angle: a novel simplified method [Text] / L. Osher, M.M. Blazer, S. Buck [et al.] // J. Foot Ankle Surg. – 2014. – Sep.-Oct., Vol. 53(5). – P. 548–556. III. Argerakis, N.G. The radiographic effects of the scarf bunionectomy on rearfoot alignment [Text] / N.G. Argerakis, L.Jr. Weil, L.S. Sr. Weil // Foot Ankle Spec. – 2015. – Apr., Vol. 8(2). – P. 89–94. IV. Bauer, T. Percutaneous forefoot surgery [Text] / T. Bauer // Orthop. Traumatol. Surg. Res. – 2014. – Feb., Vol. 100(1 Suppl.). – P. S191–S204. V. Biomechanical Evaluation of Custom Foot Orthoses for Hallux Valgus Deformity [Text] // J. Foot Ankle Surg. – 2015. – Sep.-Oct., Vol.54(5). – P. 852–855. VI. Chopra, S. Characterization of gait in female patients with moderate to severe hallux valgus deformity [Text] / S. Chopra, K. Moerenhout, X. Crevoisier // Clin. Biomech. (Bristol, Avon). – 2015. – Jul., Vol. 30(6). – P. 629–635. VII. Computer assisted planning and custom-made surgical guide for malunited pronation deformity after first metatarsophalangeal joint arthrodesis in rheumatoid arthritis: a case report [Text] / M. Hirao, S. Ikemoto, H. Tsuboi [et al.] // Comput. Aided Surg. – 2014. – Vol. 19(1-3). – P. 13–19. VIII. Correlation between static radiographic measurements and intersegmental angular measurements during gait using a multisegment foot model [Text] / D.Y. Lee, S.G. Seo, E.J. Kim [et al.] // Foot Ankle Int. – 2015. – Jan., Vol.36(1). – P. 1–10. IX. Correlative study between length of first metatarsal and transfer metatarsalgia after osteotomy of first metatarsal [Text]: [Article in Chinese] / F.Q. Zhang, B.Y. Pei, S.T. Wei [et al.] // Zhonghua Yi XueZaZhi. – 2013. – Nov. 19, Vol. 93(43). – P. 3441–3444. X. Dave, M.H. Forefoot Deformity in Rheumatoid Arthritis: A Comparison of Shod and Unshod Populations [Text] / M.H. Dave, L.W. Mason, K. Hariharan // Foot Ankle Spec. – 2015. – Oct., Vol. 8(5). – P. 378–383. XI. Does arthrodesis of the first metatarsophalangeal joint correct the intermetatarsal M1M2 angle? Analysis of a continuous series of 208 arthrodeses fixed with plates [Text] / F. Dalat, F. Cottalorda, M.H. Fessy [et al.] // Orthop. Traumatol. Surg. Res. – 2015. – Oct., Vol. 101(6). – P. 709–714. XII. Dynamic plantar pressure distribution after percutaneous hallux valgus correction using the Reverdin-Isham osteotomy [Text]: [Article in Spanish] / G. Rodríguez-Reyes, E. López-Gavito, A.I. Pérez-Sanpablo [et al.] // Rev. Invest. Clin. – 2014. – Jul., Vol. 66, Suppl. 1. – P. S79-S84. XIII. Efficacy of Bilateral Simultaneous Hallux Valgus Correction Compared to Unilateral [Text] / A.V. Boychenko, L.N. Solomin, S.G. Parfeyev [et al.] // Foot Ankle Int. – 2015. – Nov., Vol. 36(11). – P. 1339–1343. XIV. Endolog technique for correction of hallux valgus: a prospective study of 30 patients with 4-year follow-up [Text] / C. Biz, M. Corradin, I. Petretta [et al.] // J. OrthopSurg Res. – 2015. – Jul. 2, № 10. – P. 102. XV. First metatarsal proximal opening wedge osteotomy for correction of hallux valgus deformity: comparison of straight versus oblique osteotomy [Text] / S.H. Han, E.H. Park, J. Jo [et al.] // Yonsei Med. J. – 2015. – May, Vol. 56(3). – P. 744–752. XVI. Long-term outcome of joint-preserving surgery by combination metatarsal osteotomies for shortening for forefoot deformity in patients with rheumatoid arthritis [Text] / H. Niki, T. Hirano, Y. Akiyama [et al.] // Mod. Rheumatol. – 2015. – Sep., Vol. 25(5). – P. 683–638. XVII. Maceira, E. Transfer metatarsalgia post hallux valgus surgery [Text] / E. Maceira, M. Monteagudo // Foot Ankle Clin. – 2014. – Jun., Vol. 19(2). – P.285–307. XVIII. Nielson, D.L. Absorbable fixation in forefoot surgery: a viable alternative to metallic hardware [Text] / D.L. Nielson, N.J. Young, C.M. Zelen // Clin. Podiatr. Med. Surg. – 2013. – Jul., Vol. 30(3). – P. 283–293 XIX. Patient’s satisfaction after outpatient forefoot surgery: Study of 619 cases [Text] / A. Mouton, V. Le Strat, D. Medevielle [et al.] // Orthop. Traumatol. Surg. Res. – 2015. – Oct., Vol. 101(6 Suppl.). – P. S217–S220. XX. Preference of surgical procedure for the forefoot deformity in the rheumatoid arthritis patients–A prospective, randomized, internal controlled study [Text] / M. Tada, T. Koike, T. Okano [et al.] // Mod. Rheumatol. – 2015. – May., Vol. 25(3). – P.362–366. XXI. Redfern, D. Percutaneous Surgery of the Forefoot [Text] / D. Redfern, J. Vernois, B.P. Legré // Clin. Podiatr. Med. Surg. – 2015. – Jul., Vol. 32(3). – P. 291–332. XXII. Singh, D. Bullous pemphigoid after bilateral forefoot surgery [Text] / D. Singh, A. Swann // Foot Ankle Spec. – 2015. – Feb., Vol. 8(1). – P. 68–72. XXIII. Treatment of moderate hallux valgus by percutaneous, extra-articular reverse-L Chevron (PERC) osteotomy [Text] / J. Lucas y Hernandez, P. Golanó, S. Roshan-Zamir [et al.] // Bone Joint J. – 2016. – Mar., Vol. 98-B(3). – P. 365–373. XXIV. Weil, L.Jr. Scarf osteotomy for correction of hallux abducto valgus deformity [Text] / L.Jr. Weil, M. Bowen // Clin. Podiatr. Med. Surg. – 2014. – Apr., Vol.31(2). – P. 233–246. View | Download QUANTITATIVE ULTRASONOGRAPHY OF THE STOMACH AND SMALL INTESTINE IN HEALTHYDOGS Authors: Roman A. Tcygansky,Irina I. Nekrasova,Angelina N. Shulunova,Alexander I.Sidelnikov, DOI: https://doi.org/10.26782/jmcms.spl.10/2020.06.00045 Abstract: Purpose.To determine the quantitative echogenicity indicators (and their ratio) of the layers of stomach and small intestine wall in healthy dogs. Methods. A prospective 3-year study of 86 healthy dogs (aged 1-7 yrs) of different breeds and of both sexes. Echo homogeneity and echogenicity of the stomach and intestines wall were determined by the method of Silina, T.L., et al. (2010) in absolute values ​​of average brightness levels of ultrasound image pixels using the 8-bit scale with 256 shades of gray. Results. Quantitative echogenicity indicators of the stomach and the small intestine wall in dogs were determined. Based on the numerical values ​​characterizing echogenicity distribution in each layer of a separate structure of the digestive system, the coefficient of gastric echogenicity is determined as 1:2.4:1.1 (mucosa/submucosa/muscle layers, respectively), the coefficient of duodenum and jejunum echogenicity is determined as 1:3.5:2 and that of ileum is 1:1.8:1. Clinical significance. The echogenicity coefficient of the wall of the digestive system allows an objective assessment of the stomach and intestines wall and can serve as the basis for a quantitative assessment of echogenicity changes for various pathologies of the digestive system Keywords: Ultrasound (US),echogenicity,echogenicity coefficient,digestive system,dogs,stomach,intestines, Refference: I. Agut, A. Ultrasound examination of the small intestine in small animals // Veterinary focus. 2009.Vol. 19. No. 1. P. 20-29. II. Bull. 4.RF patent 2398513, IPC51A61B8 / 00 A61B8 / 14 (2006.01) A method for determining the homoechogeneity and the degree of echogenicity of an ultrasound image / T. Silina, S. S. Golubkov. – No. 2008149311/14; declared 12/16/2008; publ. 09/10/2010 III. Choi, M., Seo, M., Jung, J., Lee, K., Yoon, J., Chang, D., Park, RD. Evaluation of canine gastric motility with ultrasonography // J. of Veterinary Medical Science. – 2002. Vol. 64. – № 1. – P. 17-21. IV. Delaney, F., O’Brien, R.T., Waller, K.Ultrasound evaluation of small bowel thickness compared to weight in normal dogs // Veterinary Radiology and Ultrasound. 2003 Vol. 44, № 5. Р 577-580. V. Diana, A., Specchi, S., Toaldo, M.B., Chiocchetti, R., Laghi, A., Cipone, M. Contrast-enhanced ultrasonography of the small bowel in healthy cats // Veterinary Radiology and Ultrasound. – 2011. – Vol. 52, № 5. – Р. 555-559. VI. Garcia, D.A.A., Froes, T.R. Errors in abdominal ultrasonography in dogs and cats // J. of Small Animal Practice. – 2012. Vol. 53. – № 9. – P. 514-519. VII. Garcia, D.A.A., Froes, T.R. Importance of fasting in preparing dogs for abdominal ultrasound examination of specific organs // J. of Small Animal Practice. – 2014. Vol. 55. – № 12. – P. 630-634. VIII. Gaschen, L., Granger, L.A., Oubre, O., Shannon, D., Kearney, M., Gaschen, F. The effects of food intake and its fat composition on intestinal echogenicity in healthy dogs // Veterinary Radiology and Ultrasound. 2016. Vol. 57. № 5. P. 546-550 IX. Gaschen, L., Kircher, P., Stussi, A., Allenspach, K., Gaschen, F., Doherr, M., Grone, A. Comparison of ultrasonographic findings with clinical activity index (CIBDAI) and diagnosis in dogs with chronic enteropathies // Veterinary radiology and ultrasound. – 2008. – Vol. 49. – № 1. – Р. 56-64. X. Gil, E.M.U. Garcia, D.A.A. Froes, T.R. In utero development of the fetal intestine: Sonographic evaluation and correlation with gestational age and fetal maturity in dogs // Theriogenology. 2015. Vol. 84, №5. Р. 681-686. XI. Gladwin, N.E. Penninck, D.G., Webster, C.R.L. Ultrasonographic evaluation of the thickness of the wall layers in the intestinal tract of dogs // American Journal of Veterinary Research. 2014. Vol. 75, №4. Р. 349-353. XII. Gory, G., Rault, D.N., Gatel, L, Dally, C., Belli, P., Couturier, L., Cauvin, E. Ultrasonographic characteristics of the abdominal esophagus and cardia in dogs // Veterinary Radiology and Ultrasound. 2014. Vol. 55, № 5. P. 552-560. XIII. Günther, C.S. Lautenschläger, I.E., Scholz, V.B. Assessment of the inter- and intraobserver variability for sonographical measurement of intestinal wall thickness in dogs without gastrointestinal diseases | [Inter-und Intraobserver-Variabilitätbei der sonographischenBestimmung der Darmwanddicke von HundenohnegastrointestinaleErkrankungen] // Tierarztliche Praxis Ausgabe K: Kleintiere – Heimtiere. 2014. Vol. 42 №2. Р. 71-78. XIV. Hanazono, K., Fukumoto, S., Hirayama, K., Takashima, K., Yamane, Y., Natsuhori, M., Kadosawa, T., Uchide, T. Predicting Metastatic Potential of gastrointestinal stromal tumors in dog by ultrasonography // J. of Veterinary Medical Science. – 2012. Vol. 74. – № 11. – P. 1477-1482. XV. Heng, H.G., Lim, Ch.K., Miller, M.A., Broman, M.M.Prevalence and significance of an ultrasonographic colonic muscularishyperechoic band paralleling the serosal layer in dogs // Veterinary Radiology and Ultrasound. 2015. Vol. 56 № 6. P. 666-669. XVI. Ivančić, M., Mai, W. Qualitative and quantitative comparison of renal vs. hepatic ultrasonographic intensity in healthy dogs // Veterinary Radiology and Ultrasound. 2008. Vol. 49. № 4. Р. 368-373. XVII. Lamb, C.R., Mantis, P. Ultrasonographic features of intestinal intussusception in 10 dogs // J. of Small Animal Practice. – 2008. Vol. 39. – № 9. – P. 437-441. XVIII. Le Roux, A. B., Granger, L.A., Wakamatsu, N, Kearney, M.T., Gaschen, L.Ex vivo correlation of ultrasonographic small intestinal wall layering with histology in dogs // Veterinary Radiology and Ultrasound.2016. Vol. 57. № 5. P. 534-545. XIX. Nielsen, T. High-frequency ultrasound of Peyer’s patches in the small intestine of young cats / T. Nielsen [et al.] // Journal of Feline Medicine and Surgery. – 2015. – Vol. 18, № 4. – Р. 303-309. XX. PenninckD.G. Gastrointestinal tract. In Nyland T.G., Mattoon J.S. (eds): Small Animal Diagnostic Ultrasound. Philadelphia: WB Saunders. 2002, 2nd ed. Р. 207-230. XXI. PenninckD.G. Gastrointestinal tract. In: PenninckD.G.,d´Anjou M.A. Atlas of Small Animal Ultrasonography. Blackwell Publishing, Iowa. 2008. Р. 281-318. XXII. Penninck, D.G., Nyland, T.G., Kerr, L.Y., Fisher, P.E. Ultrasonographic evaluation of gastrointestinal diseases in small animals // Veterinary Radiology. 1990. Vol. 31. №3. P. 134-141. XXIII. Penninck, D.G.,Webster, C.R.L.,Keating, J.H. The sonographic appearance of intestinal mucosal fibrosis in cats // Veterinary Radiology and Ultrasound. – 2010. – Vol. 51, № 4. – Р. 458-461. XXIV. Pollard, R.E.,Johnson, E.G., Pesavento, P.A., Baker, T.W., Cannon, A.B., Kass, P.H., Marks, S.L. Effects of corn oil administered orally on conspicuity of ultrasonographic small intestinal lesions in dogs with lymphangiectasia // Veterinary Radiology and Ultrasound. 2013. Vol. 54. № 4. P. 390-397. XXV. Rault, D.N., Besso, J.G., Boulouha, L., Begon, D., Ruel, Y. Significance of a common extended mucosal interface observed in transverse small intestine sonograms // Veterinary Radiology and Ultrasound. 2004. Vol. 45. №2. Р. 177-179. XXVI. Sutherland-Smith, J., Penninck, D.G., Keating, J.H., Webster, C.R.L. Ultrasonographic intestinal hyperechoic mucosal striations in dogs are associated with lacteal dilation // Veterinary Radiology and Ultrasound. – 2007. Vol. 48. – № 1. – P. 51-57. View | Download EVALUATION OF ADAPTIVE POTENTIAL IN MEDICAL STUDENTS IN THE CONTEXT OF SEASONAL DYNAMICS Authors: Larisa A. Merdenova,Elena A. Takoeva,Marina I. Nartikoeva,Victoria A. Belyayeva,Fatima S. Datieva,Larisa R. Datieva, DOI: https://doi.org/10.26782/jmcms.spl.10/2020.06.00046 Abstract: The aim of this work was to assess the functional reserves of the body to quantify individual health; adaptation, psychophysiological characteristics of the health quality of medical students in different seasons of the year. When studying the temporal organization of physiological functions, the rhythm parameters of physiological functions were determined, followed by processing the results using the Cosinor Analysis program, which reveals rhythms with an unknown period for unequal observations, evaluates 5 parameters of sinusoidal rhythms (mesor, amplitude, acrophase, period, reliability). The essence of desynchronization is the mismatch of circadian rhythms among themselves or destruction of the rhythms architectonics (instability of acrophases or their disappearance). Desynchronization with respect to the rhythmic structure of the body is of a disregulatory nature, most pronounced in pathological desynchronization. High neurotism, increased anxiety reinforces the tendency to internal desynchronization, which increases with stress. During examination stress, students experience a decrease in the stability of the temporary organization of the biosystem and the tension of adaptive mechanisms develops, which affects attention, mental performance and the quality of adaptation to the educational process. Time is shortened and the amplitude of the “initial minute” decreases, personal and situational anxiety develops, and the level of psychophysiological adaptation decreases. The results of the work are priority because they can be used in assessing quality and level of health. Keywords: Desynchronosis,biorhythms,psycho-emotional stress,mesor,acrophase,amplitude,individual minute, Refference: I. Arendt, J., Middleton, B. Human seasonal and circadian studies in Antarctica (Halley, 75_S) – General and Comparative Endocrinology. 2017: 250-259. (http://dx.doi.org/10.1016/j.ygcen.2017.05.010). II. BalandinYu.P. A brief methodological guide on the use of the agro-industrial complex “Health Sources” / Yu.P. Balandin, V.S. Generalov, V.F. Shishlov. Ryazan, 2007. III. Buslovskaya L.K. Adaptation reactions in students at exam stress/ L.K. Buslovskaya, Yu.P. Ryzhkova. Scientific bulletin of Belgorod State University. Series: Natural Sciences. 2011;17(21):46-52. IV. Chutko L. S. Sindromjemocionalnogovygoranija – Klinicheskie I psihologicheskieaspekty./ L.S Chutko. Moscow: MEDpress-inform, 2013. V. Eroshina K., Paul Wilkinson, Martin Mackey. The role of environmental and social factors in the occurrence of diseases of the respiratory tract in children of primary school age in Moscow. Medicine. 2013:57-71. VI. Fagrell B. “Microcirculation of the Skin”. The physiology and pharmacology of the microcirculation. 2013:423. VII. Gurova O.A. Change in blood microcirculation in students throughout the day. New research. 2013; 2 (35):66-71. VIII. Khetagurova L.G. – Stress/Ed. L.G. Khetagurov. Vladikavkaz: Project-Press Publishing House, 2010. IX. Khetagurova L.G., Urumova L.T. et al. Stress (chronomedical aspects). International Journal of Experimental Education 2010; 12: 30-31. X. Khetagurova L.G., Salbiev K.D., Belyaev S.D., Datieva F.S., Kataeva M.R., Tagaeva I.R. Chronopathology (experimental and clinical aspects/ Ed. L.G. Khetagurov, K.D. Salbiev, S.D.Belyaev, F.S. Datiev, M.R. Kataev, I.R. Tagaev. Moscow: Science, 2004. XI. KlassinaS.Ya. Self-regulatory reactions in the microvasculature of the nail bed of fingers in person with psycho-emotional stress. Bulletin of new medical technologies, 2013; 2 (XX):408-412. XII. Kovtun O.P., Anufrieva E.V., Polushina L.G. Gender-age characteristics of the component composition of the body in overweight and obese schoolchildren. Medical Science and Education of the Urals. 2019; 3:139-145. XIII. Kuchieva M.B., Chaplygina E.V., Vartanova O.T., Aksenova O.A., Evtushenko A.V., Nor-Arevyan K.A., Elizarova E.S., Efremova E.N. A comparative analysis of the constitutional features of various generations of healthy young men and women in the Rostov Region. Modern problems of science and education. 2017; 5:50-59. XIV. Mathias Adamsson1, ThorbjörnLaike, Takeshi Morita – Annual variation in daily light expo-sure and circadian change of melatonin and cortisol consent rations at a northern latitude with large seasonal differences in photoperiod length – Journal of Physiological Anthropology. 2017; 36: 6 – 15. XV. Merdenova L.A., Tagaeva I.R., Takoeva E.A. Features of the study of biological rhythms in children. The results of fundamental and applied research in the field of natural and technical sciences. Materials of the International Scientific and Practical Conference. Belgorod, 2017, pp. 119-123. XVI. Ogarysheva N.V. The dynamics of mental performance as a criterion for adapting to the teaching load. Bulletin of the Samara Scientific Center of the Russian Academy of Sciences. 2014;16:5 (1): S.636-638. XVII. Pekmezovi T. Gene-environment interaction: A genetic-epidemiological approach. Journal of Medical Biochemistry. 2010;29:131-134. XVIII. Rapoport S.I., Chibisov S.M. Chronobiology and chronomedicine: history and prospects/Ed. S.M. Chibisov, S.I. Rapoport ,, M.L. Blagonravova. Chronobiology and Chronomedicine: Peoples’ Friendship University of Russia (RUDN) Press. Moscow, 2018. XIX. Roustit M., Cracowski J.L. “Non-invasive assessment of skin microvascular function in humans: an insight into methods” – Microcirculation 2012; 19 (1): 47-64. XX. Rud V.O., FisunYu.O. – References of the circadian desinchronosis in students. Ukrainian Bulletin of Psychoneurology. 2010; 18(2) (63): 74-77. XXI. Takoeva Z. A., Medoeva N. O., Berezova D. T., Merdenova L. A. et al. Long-term analysis of the results of chronomonitoring of the health of the population of North Ossetia; Vladikavkaz Medical and Biological Bulletin. 2011; 12(12,19): 32-38. XXII. Urumova L.T., Tagaeva I.R., Takoeva E.A., Datieva L.R. – The study of some health indicators of medical students in different periods of the year. Health and education in the XXI century. 2016; 18(4): 94-97. XXIII. Westman J. – Complex diseases. In: Medical genetics for the modern clinician. USA: Lippincott Williams & Wilkins, 2006. XXIV. Yadrischenskaya T.V. Circadian biorhythms of students and their importance in educational activities. Problems of higher education. Pacific State University Press. 2016; 2:176-178. View | Download TRIADIC COMPARATIVE ANALYSIS Authors: Stanislav A.Kudzh,Victor Ya. Tsvetkov, DOI: https://doi.org/10.26782/jmcms.spl.10/2020.06.00047 Abstract: The present study of comparison methods based on the triadic model introduces the following concepts: the relation of comparability and the relation of comparison, and object comparison and attributive comparison. The difference between active and passive qualitative comparison is shown, two triadic models of passive and active comparison and models for comparing two and three objects are described. Triadic comparison models are proposed as an alternative to dyadic comparison models. Comparison allows finding the common and the different; this approach is proposed for the analysis of the nomothetic and ideographic method of obtaining knowledge. The nomothetic method identifies and evaluates the general, while the ideographic method searches for unique in parameters and in combinations of parameters. Triadic comparison is used in systems and methods of argumentation, as well as in the analysis of consistency/inconsistency. Keywords: Comparative analysis,dyad,triad,triadic model,comparability relation,object comparison,attributive comparison,nomothetic method,ideographic method, Refference: I. AltafS., Aslam.M.Paired comparison analysis of the van Baarenmodel using Bayesian approach with noninformativeprior.Pakistan Journal of Statistics and Operation Research 8(2) (2012) 259{270. II. AmooreJ. E., VenstromD Correlations between stereochemical assessments and organoleptic analysis of odorous compounds. Olfaction and Taste (2016) 3{17. III. BarnesJ., KlingerR. Embedding projection for targeted cross-lingual sentiment: model comparisons and a real-world study. Journal of Artificial Intelligence Research 66 (2019) 691{742. doi.org/10.1613/jair.1.11561 IV. Castro-SchiloL., FerrerE.Comparison of nomothetic versus idiographic-oriented methods for making predictions about distal outcomes from time series data. Multivariate Behavioral Research 48(2) (2013) 175{207. V. De BonaG.et al. Classifying inconsistency measures using graphs. Journal of Artificial Intelligence Research 66 (2019) 937{987. VI. FideliR. La comparazione. Milano: Angeli, 1998. VII. GordonT. F., PrakkenH., WaltonD. The Carneades model of argument and burden of proof. Artificial Intelligence 10(15) (2007) 875{896. VIII. GrenzS.J. The social god and the relational self: A Triad theology of the imago Dei. Westminster: John Knox Press, 2001. IX. HermansH.J. M.On the integration of nomothetic and idiographic research methods in the study of personal meaning.Journal of Personality 56(4) (1988) 785{812. X. JamiesonK. G., NowakR. Active ranking using pairwise comparisons.Advances in Neural Information Processing Systems (2011) 2240{2248. XI. JongsmaC.Poythress’s triad logic: a review essay. Pro Rege 42(4) (2014) 6{15. XII. KärkkäinenV.M. Trinity and Religious Pluralism: The Doctrine of the Trinity in Christian Theology of Religions. London: Routledge, 2017. XIII. KudzhS. A., TsvetkovV.Ya. Triadic systems. Russian Technology Magazine 7(6) (2019) 74{882. XIV. NelsonK.E.Some observations from the perspective of the rare event cognitive comparison theory of language acquisition.Children’s Language 6 (1987) 289{331. XV. NiskanenA., WallnerJ., JärvisaloM.Synthesizing argumentation frameworks from examples. Journal of Artificial Intelligence Research 66 (2019) 503{554. XVI. PührerJ.Realizability of three-valued semantics for abstract dialectical frameworks.Artificial Intelligence 278 (2020) 103{198. XVII. SwansonG.Frameworks for comparative research: structural anthropology and the theory of action. In: Vallier, Ivan (Ed.). Comparative methods in sociology: essays on trends and applications.Berkeley: University of California Press, 1971 141{202. XVIII. TsvetkovV.Ya.Worldview model as the result of education.World Applied Sciences Journal 31(2) (2014) 211{215. XIX. TsvetkovV. Ya. Logical analysis and variable scales. Slavic Forum 4(22) (2018) 103{109. XX. Wang S. et al. Transit traffic analysis zone delineating method based on Thiessen polygon. Sustainability 6(4) (2014) 1821{1832. View | Download DEVELOPING TECHNOLOGY OF CREATING WEAR-RESISTANT CERAMIC COATING FOR ICE CYLINDER

JOURNAL ARTICLE published 30 June 2020 in JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES

Authors: Anatoliy V Chavdarov

Journal Vol – 15 No -7, July 2020 Journal > Journal > Journal Vol – 15 No -7, July 2020 > Page 6 PERFORMANCE AND EMISSION CHARACTERISTICS OF GASOLINE-ETHANOL BLENDS ON PFI-SI ENGINE Authors: D.Vinay Kumar ,G.Samhita Priyadarsini,V.Jagadeesh Babu,Y.Sai Varun Teja, DOI NO: https://doi.org/10.26782/jmcms.2020.07.00051 admin July 26, 2020 Abstract: Alcohol based fuels can be produced from renewable energy sources and has the potential to reduce pollutant emissions due to their oxygenated nature. Lighter alcohols like ethanol and methanol are easily miscible with gasoline and by blending alcohols with gasoline; a part of conventional fuel can be replaced while contributing to fuel economy. Several researchers tested various ethanol blends on different engine test rigs and identified ethanol as one of the most promising ecofriendly fuels for spark ignition engine. Its properties high octane number, high latent heat of vaporization give better performance characteristics and reduces exhaust emissions compared to gasoline. This paper focuses on studying the effects of blending 50 of ethanol by volume with gasoline as it hardly needs engine modifications. Gasoline (E0) and E50 fuels were investigated experimentally on single-cylinder, four-stroke port fuel injection spark ignition engine by varying engine speed from 1500 rpm to 3500 rpm. Performance Characteristics like torque, brake power, specific fuel consumption, and volumetric efficiency and exhaust emissions such as HC, CO, CO2, NOx were studied.. Keywords: Ethanol,Emissions,Gasoline,Port fuel Injection, Refference: I Badrawada, I. G. G., and A. A. P. Susastriawan. “Influence of ethanol–gasoline blend on performance and emission of four-stroke spark ignition motorcycle.” Clean Technologies and Environmental Policy (2019): 1-6. II Doğan, Battal, et al. “The effect of ethanol-gasoline blends on performance and exhaust emissions of a spark ignition engine through exergy analysis.” Applied Thermal Engineering 120 (2017): 433-443. III Efemwenkiekie, U. Ka, et al. “Comparative Analysis of a Four Stroke Spark Ignition Engine Performance Using Local Ethanol and Gasoline Blends.” Procedia Manufacturing 35 (2019): 1079-1086. IV Galloni, E., F. Scala, and G. Fontana. “Influence of fuel bio-alcohol content on the performance of a turbo-charged, PFI, spark-ignition engine.” Energy 170 (2019): 85-92. V Hasan, Ahmad O., et al. “Impact of changing combustion chamber geometry on emissions, and combustion characteristics of a single cylinder SI (spark ignition) engine fueled with ethanol/gasoline blends.” Fuel 231 (2018): 197-203. VI Mourad, M., and K. Mahmoud. “Investigation into SI engine performance characteristics and emissions fuelled with ethanol/butanol-gasoline blends.” Renewable Energy 143 (2019): 762-771. VII Singh, Ripudaman, et al. “Influence of fuel injection strategies on efficiency and particulate emissions of gasoline and ethanol blends in a turbocharged multi-cylinder direct injection engine.” International Journal of Engine Research (2019): 1468087419838393. VIII Thakur, Amit Kumar, et al. “Progress in performance analysis of ethanol-gasoline blends on SI engine.” Renewable and Sustainable Energy Reviews 69 (2017): 324-340. View Download Journal Vol – 15 No -7, July 2020 CHARACTERIZATION OF MATERIALS FOR CUSTOMIZED AFO USING ADDITIVE MANUFACTURING Authors: Gamini Suresh,Nagarjuna Maguluri,Kunchala Balakrishna, DOI NO: https://doi.org/10.26782/jmcms.2020.07.00052 admin July 26, 2020 Abstract: Neurodegenerative conditions and compressed nerves often cause an abnormal foot drop that affects an individual gait and make it difficult to walk normally. Ankle Foot Orthosis (AFO) is the medical device which is recommended for the patients to improve the walking ability and decrease the risk of falls. Custom AFOs provide better fit, comfort and performance than pre-manufactured ones. The technique of 3D-printing is suitable for making custom AFOs. Fused deposition modelling (FDM) is a 3D-printing method for custom AFO applications with the desired resistance and material deposition rate. Generally, FDM is a thermal process; therefore materials thermal behaviour plays an important role in optimizing the performance of the printed parts. The objective of this study is to evaluate the thermal behaviour of PLA, ABS, nylon and WF-PLA filaments before manufacturing the AFO components using the FDM method. In the study, the sequence of testing materials provides a basic measuring method to investigate AFO device parts thermal stability. Thermal analysis (TG/DTG and DSC) was carried out before 3D printing is to characterize the thermal stability of each material. Keywords: Additive Manufacturing,Ankle Foot Orthosis (AFO),FusedDeposition Modelling,ThermalAnalysis, Refference: I. J. Pritchett, “Foot drop: Background, Anatomy, Pathophysiology,” Medscape Drugs, Dis. Proced., vol. 350, no. apr27_6, p. h1736, 2014. II. J. Graham, “Foot drop: Explaining the causes, characteristics and treatment,” Br. J. Neurosci. Nurs., vol. 6, no. 4, pp. 168–172, 2010. III. Y. Feng and Y. Song, “The Categories of AFO and Its Effect on Patients With Foot Impair: A Systemic Review,” Phys. Act. Heal., vol. 1, no. 1, pp. 8–16, 2017. IV. J. H. P. Pallari, K. W. Dalgarno, J. Munguia, L. Muraru, L. Peeraer, S. Telfer, and J. Woodburn” Design and additive fabrication of foot and ankle-foot orthoses”21st Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference, SFF 2010 (2010) 834-845 V. Y. Jin, Y. He, and A. Shih, “Process Planning for the Fuse Deposition Modeling of Ankle-Foot-Othoses,” Procedia CIRP, vol. 42, no. Isem Xviii, pp. 760–765, 2016. VI. R. K. Chen, Y. an Jin, J. Wensman, and A. Shih, “Additive manufacturing of custom orthoses and prostheses-A review,” Addit. Manuf., vol. 12, pp. 77–89, 2016. VII. A. D. Maso and F. Cosmi, “ScienceDirect 3D-printed ankle-foot orthosis : a design method,” Mater. Today Proc., vol. 12, pp. 252–261, 2019. VIII. B. Yuan et al., “Designing of a passive knee-assisting exoskeleton for weight-bearing,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2017, vol. 10463 LNAI, pp. 273–285. IX. R. Spina, B. Cavalcante, and F. Lavecchia, “Diment LE, Thompson MS, Bergmann JHM. Clinical efficacy and effectiveness of 3D printing: a systematic review.,” AIP Conf. Proc., vol. 1960, 2018. X. M. Srivastava, S. Maheshwari, T. K. Kundra, and S. Rathee, “ScienceDirect Multi-Response Optimization of Fused Deposition Modelling Process Parameters of ABS Using Response Surface Methodology ( RSM ) -Based Desirability Analysis,” Mater. Today Proc., vol. 4, no. 2, pp. 1972–1977, 2017. XI. E. Malekipour, S. Attoye, and H. El-Mounayri, “Investigation of Layer Based Thermal Behavior in Fused Deposition Modeling Process by Infrared Thermography,” Procedia Manuf., vol. 26, pp. 1014–1022, 2018. XII. A. Patar, N. Jamlus, K. Makhtar, J. Mahmud, and T. Komeda, “Development of dynamic ankle foot orthosis for therapeutic application,” Procedia Eng., vol. 41, no. Iris, pp. 1432–1440, 2012. XIII. Y. A. Jin, H. Li, Y. He, and J. Z. Fu, “Quantitative analysis of surface profile in fused deposition modelling,” Addit. Manuf., vol. 8, pp. 142–148, 2015. XIV. M. Walbran, K. Turner, and A. J. McDaid, “Customized 3D printed ankle-foot orthosis with adaptable carbon fibre composite spring joint,” Cogent Eng., vol. 3, no. 1, pp. 1–11, 2016. XV. N. Wierzbicka, F. Górski, R. Wichniarek, and W. Kuczko, “The effect of process parameters in fused deposition modelling on bonding degree and mechanical properties,” Adv. Sci. Technol. Res. J., vol. 11, no. 3, pp. 283–288, 2017. XVI. S. Farah, D. G. Anderson, and R. Langer, “Physical and mechanical properties of PLA, and their functions in widespread applications — A comprehensive review,” Adv. Drug Deliv. Rev., vol. 107, pp. 367–392, 2016. XVII. S. Wojtyła, P. Klama, and T. Baran, “Is 3D printing safe ? Analysis of the thermal treatment of thermoplastics : ABS , PLA , PET , and,” vol. 9624, no. April, 2017. XVIII. G. Cicala et al., “Polylactide / lignin blends,” J. Therm. Anal. Calorim., 2017. XIX. S. Y. Lee, I. A. Kang, G. H. Doh, H. G. Yoon, B. D. Park, and Q. Wu, “Thermal and mechanical properties of wood flour/talc-filled polylactic acid composites: Effect of filler content and coupling treatment,” J. Thermoplast. Compos. Mater., vol. 21, no. 3, pp. 209–223, 2008. XX. Y. Tao, H. Wang, Z. Li, P. Li, and S. Q. Shi, “Development and application ofwood flour-filled polylactic acid composite filament for 3d printing,” Materials (Basel)., vol. 10, no. 4, pp. 1–6, 2017. XXI. D. Lewitus, S. McCarthy, A. Ophir, and S. Kenig, “The effect of nanoclays on the properties of PLLA-modified polymers Part 1: Mechanical and thermal properties,” J. Polym. Environ., vol. 14, no. 2, pp. 171–177, 2006. XXII. H. J. Chung, E. J. Lee, and S. T. Lim, “Comparison in glass transition and enthalpy relaxation between native and gelatinized rice starches,” Carbohydr. Polym., vol. 48, no. 3, pp. 287–298, 2002. View Download Journal Vol – 15 No -7, July 2020 CFD STUDIES OF MIXING BEHAVIOR OF INERT SAND WITH BIOMASS IN FLUIDIZED BED Authors: B.J.M.Rao,K.V.N.S.Rao, DOI NO: https://doi.org/10.26782/jmcms.2020.07.00053 admin July 26, 2020 Abstract: Agriculture deposits, which remains unused and often causes ecological problems, could play an important role as an energy source to meet energy needs in developing countries ‘ rural areas. Moreover, energy levels in these deposits are low and need to be elevated by introducing efficient operative conversion technologies to utilize these residues as fuels. In this context, the utilization of a fluidized bed innovation enables a wide range of non-uniform-sized low-grade fuels to be effectively converted into other forms of energy.This study was undertaken to evaluate the effectiveness of fluidized conversion method for transformation of agricultural by-products such as rice husk, sawdust, and groundnut shells into useful energy. The present investigation was conducted to know the mixing characteristics of sand and fuel have been found by conducting experiments with mixing ratio of rice husk (1:13), saw dust(1:5) and groundnut shells (1:12), the variation of particle movement in the bed and mixing characteristics are analyzed. The impact of sand molecule size on the fluidization speed of two biofuel and sand components is studied and recommended for groundnut shells using a sand molecule of 0.6 mm size and for rice husk, sawdust 0.4 mm sand particle size. Also, establish that the particle size of sand has a significant effect on mingling features in case of sawdust. In the next part of the investigation, the CFD simulations of the fluidized bed are done to investigate the mixing behavior of sand and biomass particles. A set of simulations are conducted by ANSYS FLUENT16; the state of the bed is the same as that of the test. The findings were presented with the volume fraction of sand and biomass particles in the form of contour plots. Keywords: Biomass,sand,mixing behavior,Volume Fraction,CFD model, Refference: I Anil Tekale, Swapna God, Balaji Bedre, Pankaj Vaghela, Ganesh Madake, Suvarna Labade (2017), Energy Production from Biomass: Review, International Journal of Innovative Science and Research Technology, Volume 2, Issue 10, ISSN No: – 2456 – 2165. II Anil Kumar, Nitin Kumar , Prashant Baredar , Ashish Shukla (2015), A review on biomass energy resources, potential, conversion and policy in India, Renewable and Sustainable Energy, Reviews 45-530-539. III Zhenglan Li, ZhenhuaXue (2015), Review of Biomass Energy utilization technology, 3rd International Conference on Material, Mechanical and Manufacturing Engineering. IV Abdeen Mustafa Omer (2011), Biomass energy resources utilisation and waste management, Journal of Agricultural Biotechnology and Sustainable Development Vol. 3(8), pp. 149 -170 V Rijul Dhingra, Abhinav Jain, Abhishek Pandey, and Srishti Mahajan (2014), Assessment of Renewable Energy in India, International Journal of Environmental Science and Development, Vol. 5, No. 5. VI Paulina Drożyner, Wojciech Rejmer, Piotr Starowicz,AndrzejKlasa, Krystyna A. Skibniewska (2013), Biomass as a Renewable Source of Energy, Technical Sciences 16(3), 211–220. VII Souvik Das, Swati Sikdar (2016), A Review on the Non-conventional Energy Sources in Indian Perspective, International Research Journal of Engineering and Technology (IRJET), Volume: 03 Issue: 02. VIII Maninder, Rupinderjit Singh Kathuria, Sonia Grover, Using Agricultural Residues as a Biomass Briquetting: An Alternative Source of Energy, IOSR Journal of Electrical and Electronics Engineering (IOSRJEEE), ISSN: 2278-1676 Volume 1, Issue 5 (July-Aug. 2012), PP 11-15. IX H.B.Goyal, DiptenduldDeal, R.C.Saxena (2006) Bio-fuels from thermochemical conversion of renewable resources: A review, Renewable and Sustainable Energy Reviews, Volume 12, Issue 2Pages 504-517. X Digambar H. Patil, J. K. Shinde(2017) A Review Paper on Study of Bubbling Fluidized Bed Gasifier, International Journal for Innovative Research in Science & Technology, Volume 4, Issue 4 XI Neil T.M. Duffy, John A. Eaton (2013) Investigation of factors affecting channelling in fixed-bed solid fuel combustion using CFD, Combustion and Flame 160, 2204–2220. XII Xing Wu, Kai Li, Feiyue and Xifeng Zhu (2017), Fluidization Behavior of Biomass Particles and its Improvement in a Cold Visualized Fluidized, Bio Resources 12(2), 3546-3559. XIII N.G. Deen, M. Van Sint Annaland, M.A. Van der Hoef, J.A.M. Kuipers (2007), Reviewof discrete particle modeling of fluidized beds, Chemical Engineering Science 62, 28 – 44. XIV BaskaraSethupathySubbaiah, Deepak Kumar Murugan, Dinesh Babu Deenadayalan, Dhamodharan.M.I (2014), Gasification of Biomass Using Fluidized Bed, International Journal of Innovative Research in Science, Engineering and Technology, Vol. 3, Issue 2. XV Priyanka Kaushal, Tobias Pröll and Hermann Hofbauer, Modelling and simulation of the biomass fired dual fluidized bed gasifier at Guessing/Austria. XVI Dawit DiribaGuta (2012), Assessment of Biomass Fuel Resource Potential and Utilization in Ethiopia: Sourcing Strategies for Renewable Energies, International Journal of Renewable Energy Research, Vol.2, and No.1. View Download Journal Vol – 15 No -7, July 2020 AN APPROACH FOR OPTIMISING THE FLOW RATE CONDITIONS OF A DIVERGENT NOZZLE UNDER DIFFERENT ANGULAR CONDITIONS Authors: Lam Ratna Raju ,Ch. Pavan Satyanarayana,Neelamsetty Vijaya Kavya, DOI NO: https://doi.org/10.26782/jmcms.2020.07.00054 admin July 26, 2020 Abstract: A spout is a device which is used to offer the guidance to the gases leaving the burning chamber. Spout is a chamber which has a capability to change over the thermo-compound essentials created within the ignition chamber into lively vitality. The spout adjustments over the low speed, excessive weight, excessive temperature fuel in the consuming chamber into rapid gasoline of decrease weight and low temperature. An exciting spout is used if the spout weight volume is superior vehicles in supersonic airplane machines commonly combine a few sort of a distinctive spout. Our exam is surpassed on the use of programming like Ansys Workbench for arranging of the spout and Fluent 15.0 for separating the streams inside the spout. The events of staggers for the pipe formed spouts have been seen close by trade parameters for numerous considered one of a kind edges. The parameters underneath recognition are differentiated and that of shape spout for singular terrific edges by using keeping up the gulf, outlet and throat width and lengths of joined together and diverse quantities as same. The simultaneous component and throat expansiveness are kept regular over the cases.The surprise of stun became envisioned and the effects exhibited near closeness in direction of motion of Mach circle and its appearance plans as exposed in numerous preliminary considers on advancement in pipe molded particular spouts with assorted edges four°,7°, 10°, Occurrence of stun is seen with higher special factors Keywords: Nozzle,Supersonic Rocket Engine,Divergent edges, Refference: I. Varun, R.; Sundararajan,T.; Usha,R.; Srinivasan,ok.; Interaction among particle-laden under increased twin supersonic jets, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 2010 224: 1005. II. Pandey,K.M.; Singh, A.P.; CFD Analysis of Conical Nozzle for Mach 3 at Various Angles of Divergence with Fluent Software, International Journal of Chemical Engineering and Applications, Vol. 1, No. 2, August 2010, ISSN: 2010-0221. III. Natta, Pardhasaradhi.; Kumar, V.Ranjith.; Rao, Dr. Y.V. Hanumantha.; Flow Analysis of Rocket Nozzle Using Computational Fluid Dynamics (Cfd), International Journal of Engineering Research and Applications (IJERA), ISSN: 2248-9622,Vol. 2, Issue five, September- October 2012, pp.1226-1235. IV. K.M. Pandey, Member IACSIT and A.P. Singh. K.M.Pandey, Member, IACSIT and S.K.YadavK.M.Pandey and S.K.Yadav, ―CFD Analysis of a Rocket Nozzle with Two Inlets at Mach2.1, Journal of Environmental Research and Development, Vol 5, No 2, 2010, pp- 308-321. V. Shigeru Aso, ArifNur Hakim, Shingo Miyamoto, Kei Inoue and Yasuhiro Tani “ Fundamental examine of supersonic combustion in natural air waft with use of surprise tunnel” Department of Aeronautics and Astronautics, Kyushu University, Japan , Acta Astronautica 57 (2005) 384 – 389. VI. P. Padmanathan, Dr. S. Vaidyanathan, Computational Analysis of Shockwave in Convergent Divergent Nozzle, International Journal of Engineering Research and Applications (IJERA), ISSN: 2248-9622 , Vol. 2, Issue 2,Mar-Apr 2012, pp.1597-1605. VII. Adamson, T.C., Jr., and Nicholls., J.A., “On the shape of jets from Highly below improved Nozzles into Still Air,” Journal of the Aerospace Sciences, Vol.26, No.1, Jan 1959, pp. Sixteen-24. VIII. Lewis, C. H., Jr., and Carlson, D. J., “Normal Shock Location in underneath increased Gas and Gas particle Jets,” AIAA Journal, Vol 2, No.4, April 1964, pp. 776-777. Books IX. Anderson, John D.Jr.; Modern Compressible Flow with Historical Perspective, Third edition, 2012 X. Versteeg. H.; Malalasekra.W.; An Introduction to Computational Fluid Dynamics The Finite Volume Method, Second Edition,2009. XI. H.K.Versteeg and W.Malala Sekhara, “An introduction to Computational fluid Dynamics”, British Library cataloguing pub, 4th version, 1996. XII. Lars Davidson, “An introduction to turbulenceModels”, Department of thermo and fluid dynamics, Chalmers college of era, Goteborg, Sweden, November, 2003. XIII. Karna s. Patel, “CFD analysis of an aerofoil”, International Journal of engineering studies,2009. XIV. K.M. Pandey, Member IACSIT and A.P. Singh “CFD Analysis of Conical Nozzle for Mach 3 at Various Angles of Divergence with Fluent Software,2017. XV. P. Parthiban, M. Robert Sagayadoss, T. Ambikapathi, Design And Analysis Of Rocket Engine Nozzle by way of the usage of CFD and Optimization of Nozzle parameters, International Journal of Engineering Research, Vol.Three., Issue.5., 2015 (Sept.-Oct.). View Download Journal Vol – 15 No -7, July 2020 DESIGN OPTIMIZATION OF DRIVE SHAFT FOR AN AUTOMOBILE APPLICATIONS Authors: Govindarajulu Eedara,P. N. Manthru Naik, DOI NO: https://doi.org/10.26782/jmcms.2020.07.00055 admin July 26, 2020 Abstract: The driveshaft is a mechanical instrument that is used in automobiles. The other name of the drive shaft is driveshaft is prop shaft. It has one long cylindrical structure consist of two universal joints. By using the driveshaft it transfers the rotary motion to the differential by using the helical gearbox. By using this rotary motion the rare wheels will run. The 3dimensional Model of automobile drive Shaft is designed using CATIA parametric which enables product development processes and thereby brings about an optimum design. Now a day’s steel is using the best material for the driveshaft.In this paper replacing the composite materials (Kevlar, e-glass epoxy) instead of steel material and itreduces a considerable amount of weight when compared to the conventional steel shaft. The composite driveshaft have high modulus is designed by using CATIA software and tested in ANSYS for optimization of design or material check and providing the best datebook Keywords: The driveshaft ,CATIA,automobile,steel,composite materials,ANSYS,Kevla,e-glass epoxy, Refference: I A.R. Abu Talib, Aidy Ali, Mohamed A. Badie, Nur Azienda Che Lah, A.F. Golestaneh Developing a hybrid, carbon/glass-fiber-reinforced, epoxy composite automotive driveshaft, Material and Design, volume31, 2010, pp 514 – 521 II ErcanSevkat, Hikmet Tumer, Residual torsional properties of composite shafts subjected to impact Loadings, Materials, and design, volume – 51, 2013, pp -956-967. III H. Bayrakceken, S. Tasgetiren, I. Yavuz two cases of failure in the power transmission system on vehicles: A Universal joint yoke and a drive shaft, volume-14,2007,pp71. IV H.B.H. Gubran, Dynamics of hybrid shafts, Mechanics Research communication, volume – 32, 2005, pp – 368-374. V Shaw D, Simitses DJ, SheinmanI. Imperfection sensitivity of laminated cylindrical shells in torsion and axial compression. ComposStruct 1985; 4(3) pp:35–60. View Download Journal Vol – 15 No -7, July 2020 EXPERIMENTAL EVALUATION OF AN SI ENGINE USING E10 EQUIVALENT TERNARY GASOLINE- ALCOHOL BLENDS

JOURNAL ARTICLE published 30 July 2020 in JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES

Authors: Farooq Sk